Contoh Soal dan Pembahasan Limit Trigonometri
Ada yang mengatakan bahwa soal limit fungsi trigonometri adalah yang paling sulit di antara soal limit lainnya. Ini karena banyak rumus dan teorema yang mesti dikuasai untuk dapat mengerjakan soal limit fungsi trigonometri dengan lancar. Di artikel ini kita mengulas 30 contoh soal limit fungsi trigonometri dan pembahasannya super lengkap.
Sebelum ke pembahasan dari soal-soal tersebut, penting bagi Anda untuk memahami teorema terkait limit fungsi trigonometri berikut ini. Kita akan sering menggunakan teorema ini untuk menyelesaikan soal-soal limit trigonometri.
Contoh 1:
Nilai \( \displaystyle \lim_{\theta \to \frac{\pi}{4}} \ \theta \ \tan \theta = \cdots \)
Pembahasan »
Langkah pertama yang biasa dilakukan untuk mencari nilai limit adalah dengan substitusi nilai variabel ke fungsi limitnya. Dalam hal ini, jika kita substitusi \( \theta = \frac{\pi}{4} \) ke fungsi limitnya diperoleh hasil berikut:
\begin{aligned} \lim_{\theta \to \frac{\pi}{4}} \ \theta \ \tan \theta &= \frac{\pi}{4} \cdot \tan \frac{\pi}{4} \\[8pt] &= \frac{\pi}{4} \cdot 1 = \frac{\pi}{4} \end{aligned}
Jadi, nilai dari \( \displaystyle \lim_{\theta \to \frac{\pi}{4}} \ \theta \ \tan \theta = \frac{\pi}{4} \).
Contoh 2:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{1 - \cos x}{x} = \cdots \)
Pembahasan »
Jika kita substitusi nilai \(x = 0\) ke fungsi limitnya diperoleh bentuk tak tentu 0/0 sehingga di sini kita tidak bisa gunakan cara substitusi langsung untuk memperoleh nilai limit.
Kita bisa selesaikan limit tersebut dengan mengalikan pembilang dan penyebut dari fungsi limitnya dengan \((1 + \cos x)\) dan kemudian menggunakan teorema limit trigonometri. Perhatikan berikut ini:
\begin{aligned} \lim_{x\to 0} \ \frac{1 - \cos x}{x} &= \lim_{x\to 0} \ \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x} \\[8pt] &= \lim_{x\to 0} \ \frac{1-\cos^2 x}{x \ (1+\cos x)} = \lim_{x\to 0} \ \frac{\sin^2 x}{x \ (1+\cos x)} \\[8pt] &= \lim_{x\to 0} \ \frac{1}{1 + \cos x} \cdot \lim_{x\to 0} \ \frac{\sin x}{x} \cdot \lim_{x\to 0} \ \sin x \\[8pt] &= \frac{1}{1 + \cos 0} \cdot 1 \cdot \sin 0 = \frac{1}{1+1} \cdot 1 \ \cdot 0 \\[8pt] &= 0 \end{aligned}
Contoh 3:
Nilai \( \displaystyle \lim_{t \to 0} \ \frac{1 - \cos t}{\sin t} = \cdots \)
- 0
- 1/4
- 1/2
- 1
- 2
Pembahasan »
Jika kita substitusi nilai \(t = 0\) ke fungsi limitnya diperoleh bentuk tak tentu 0/0 sehingga di sini kita tidak bisa gunakan cara substitusi langsung untuk memperoleh nilai limit.
Kita bisa selesaikan limit tersebut dengan membagi pembilang dan penyebut dari fungsi limitnya dengan \(t\) dan kemudian menggunakan teorema limit trigonometri. Perhatikan berikut ini:
\begin{aligned} \lim_{t \to 0} \ \frac{1 - \cos t}{\sin t} &= \lim_{x\to 0} \ \frac{\frac{1-\cos t}{t}}{\frac{\sin t}{t}}\\[8pt] &= \frac{\displaystyle \lim_{t \to 0} \frac{1-\cos t}{t} }{ \displaystyle \lim_{t \to 0} \frac{\sin t}{t} } \\[8pt] &= \frac{0}{1} = 0 \end{aligned}
Jadi, nilai dari \( \displaystyle \lim_{t \to 0} \ \frac{1 - \cos t}{\sin t} = 0 \).
Jawaban A.
Contoh 4:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{1-\cos 2x}{1-\cos x} = \cdots \)
Pembahasan »
Sama seperti pada Soal 2 dan 3, jika kita substitusi \(x = 0\) ke fungsi limitnya diperoleh bentuk tak tentu 0/0 sehingga kita tidak bisa gunakan cara substitusi langsung untuk menyelesaikan limit ini.
Untuk dapat menyelesaikan limit tersebut, Anda perlu menggunakan rumus identitas trigonometri berikut:
\begin{aligned} \cos 2x &= 1 - 2 \sin^2 x \quad \text{atau} \quad 1 - \cos 2x = 2 \sin^2 x \\[8pt] \cos x &= 1 - 2 \sin^2 \frac{1}{2} x \quad \text{atau} \quad 1 - \cos 2x = 2 \sin^2 \frac{1}{2} x \end{aligned}
Dengan menggunakan rumus identitas trigonometri di atas, penyelesaian limit dalam soal ini, yaitu:
\begin{aligned} \lim_{x\to 0} \ \frac{1-\cos 2x}{1-\cos x} &= \lim_{x\to 0} \ \frac{2\sin^2 x}{2 \sin^2 \frac{1}{2}x} \\[8pt] &= \lim_{x\to 0} \ \frac{\sin x}{\sin \frac{1}{2}x} \cdot \lim_{x\to 0} \ \frac{\sin x}{\sin \frac{1}{2}x} \\[8pt] &= \frac{1}{\frac{1}{2}} \cdot \frac{1}{\frac{1}{2}} = 2 \cdot 2 \\[8pt] &= 4 \end{aligned}
Catatan: Untuk menyelesaikan soal limit trigonometri, biasanya Anda akan sering menggunakan rumus identitas trigonometri untuk mengubah fungsi dalam limitnya sehingga nilai limit tersebut dapat diperoleh. Berikut ini diberikan sejumlah rumus identitas trigonometri yang berguna:
Untuk soal-soal berikutnya di bawah ini jika kita substitusi nilai variabel ke fungsi limitnya akan diperoleh bentuk tak tentu 0/0 atau \( \infty/\infty \). Dan kita juga akan membuat pembahasannya menjadi lebih ringkas tanpa banyak kata-kata. Intinya, pengerjaannya mirip dengan penjelasan yang diberikan pada beberapa soal di atas.
Contoh 5:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\sec x - 1}{x} = \cdots \)
Pembahasan »
Ingat: \( \sec x = \frac{1}{\cos x} \) dan \( \displaystyle \lim_{x\to 0} \ \frac{1-\cos x}{x} = 0 \) (Lihat Soal 2).
Dengan demikian, penyelesaian dari limit ini, yaitu:
\begin{aligned} \lim_{x\to 0} \ \frac{\sec x - 1}{x} &= \lim_{x\to 0} \ \frac{\frac{1}{\cos x} - 1}{x} \\[8pt] &= \lim_{x\to 0} \ \frac{1-\cos x}{x \ \cos x} \\[8pt] &= \lim_{x\to 0} \ \frac{1}{\cos x} \cdot \lim_{x\to 0} \ \frac{1-\cos x}{x} \\[8pt] &= \frac{1}{\cos 0} \cdot 0 = \frac{1}{1} \cdot 0 \\[8pt] &= 0 \end{aligned}
Contoh 6:
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{\cos x - 1}{\sin x} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to 0} \ \frac{\cos x - 1}{\sin x} &= \lim_{x \to 0} \ \frac{\cos x - 1}{\sin x} \cdot \frac{x}{x} \\[8pt] &= \lim_{x \to 0} \ \frac{\cos x - 1}{x} \cdot \lim_{x \to 0} \ \frac{x}{\sin x} \\[8pt] &= 0 \cdot 1 \\[8pt] &= 0 \end{aligned}
Contoh 7: UN SMA IPA 2011
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{1-\cos 2x}{2x \sin 2x} = \cdots \)
- 1/8
- 1/6
- 1/4
- 1/2
- 1
Pembahasan »
\begin{aligned} \lim_{x \to 0} \ \frac{1-\cos 2x}{2x \sin 2x} &= \lim_{x \to 0} \ \frac{2 \sin^2 x}{2x \sin 2x} \\[8pt] &= \lim_{x \to 0} \ \frac{2 \sin x}{2x} \cdot \lim_{x \to 0} \ \frac{\sin x}{\sin 2x} \\[8pt] &= \frac{2}{2} \cdot \frac{1}{2} = \frac{1}{2} \end{aligned}
Jawaban D.
Contoh 8:
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{3x \tan 2x}{1 - \cos 4x} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to 0} \ \frac{3x \tan 2x}{1 - \cos 4x} &= \lim_{x \to 0} \ \frac{3x \tan 2x}{2\sin^2 2x} \\[8pt] &= \lim_{x \to 0} \ \frac{3x}{2 \sin 2x} \cdot \lim_{x \to 0} \ \frac{\tan 2x}{\sin 2x} \\[8pt] &= \frac{3}{2 \cdot 2} \cdot \frac{2}{2} = \frac{3}{4} \end{aligned}
Contoh 9:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{1-\cos 2x}{x \tan 2x} = \cdots \)
- -1
- 0
- 1
- 2
- 3
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{1-\cos 2x}{x \tan 2x} &= \lim_{x\to 0} \ \frac{2 \sin^2 x}{x \tan 2x} \\[8pt] &= 2 \cdot \lim_{x\to 0} \ \frac{\sin x}{x} \cdot \lim_{x\to 0} \ \frac{\sin x}{\tan 2x} \\[8pt] &= 2 \cdot 1 \cdot \frac{1}{2} \\[8pt] &= 1 \end{aligned}
Jawaban C.
Contoh 10:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{2 - 2 \cos 2x}{x^2} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{2 - 2 \cos 2x}{x^2} &= \lim_{x\to 0} \ \frac{2(1 - \cos 2x)}{x^2} \\[8pt] &= \lim_{x\to 0} \ \frac{2(1-(1-2\sin^2 x))}{x^2} \\[8pt] &= \lim_{x\to 0} \ \frac{2(2\sin^2 x)}{x^2} = \lim_{x\to 0} \ \frac{4\sin^2 x}{x^2} \\[8pt] &= 4 \cdot \lim_{x\to 0} \ \frac{\sin x}{x} \cdot \lim_{x\to 0} \ \frac{\sin x}{x} \\[8pt] &= 4 \cdot 1 \cdot 1 \\[8pt] &= 4 \end{aligned}
Contoh 11: UN SMA IPA 2012
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\cos 4x - 1}{x \tan 2x} = \cdots \)
- 4
- 2
- -1
- -2
- -4
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{\cos 4x - 1}{x \tan 2x} &= \lim_{x\to 0} \ \frac{\cos (2 \cdot 2x) - 1}{x \tan 2x} \\[8pt] &= \lim_{x\to 0} \ \frac{-2 \sin^2 2x}{x \tan 2x} \\[8pt] &= \lim_{x\to 0} \ \frac{-2\sin 2x}{x} \cdot \lim_{x\to 0} \ \frac{\sin 2x}{\tan 2x} \\[8pt] &= -2 \cdot 2 \cdot \frac{2}{2} \\[8pt] &= -4 \end{aligned}
Jawaban E.
Contoh 12:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\tan x - \sin x}{x^3} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{\tan x - \sin x}{x^3} &= \lim_{x\to 0} \ \frac{\frac{\sin x}{\cos x} - \sin x}{x^3} \\[8pt] &= \lim_{x\to 0} \ \frac{\sin x (1 - \cos x)}{x^3 \ \cos x} \\[8pt] &= \lim_{x\to 0} \ \frac{\sin x \ (2 \sin^2 \frac{1}{2}x)}{x^3} \\[8pt] &= 2 \cdot \lim_{x\to 0} \ \left( \frac{\sin x}{x} \cdot \frac{\sin \frac{1}{2}x}{x} \cdot \frac{\sin \frac{1}{2}x}{x} \cdot \frac{1}{\cos x} \right) \\[8pt] &= 2 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{\cos 0} = \frac{1}{2} \cdot \frac{1}{1} \\[8pt] &= \frac{1}{2} \end{aligned}
Contoh 13:
Nilai \( \displaystyle \lim_{\theta \to \frac{\pi}{2}} \ \frac{\cos^2 \theta}{1 - \sin \theta} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{\theta \to \frac{\pi}{2}} \ \frac{\cos^2 \theta}{1 - \sin \theta} &= \lim_{\theta \to \frac{\pi}{2}} \ \frac{1-\sin^2 \theta}{ 1 - \sin \theta } \\[8pt] &= \lim_{\theta \to \frac{\pi}{2}} \ \frac{ (1+\sin \theta)(1-\sin \theta)}{1-\sin \theta} \\[8pt] &= \lim_{\theta \to \frac{\pi}{2}} \ (1 + \sin \theta)= 1 + \sin \frac{\pi}{2} \\[8pt] &= 1 + 1 = 2 \end{aligned}
Contoh 14:
Nilai \( \displaystyle \lim_{x \to \frac{\pi}{4}} \ \frac{1 - \tan x}{\sin x - \cos x} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to \frac{\pi}{4}} \ \frac{1 - \tan x}{\sin x - \cos x} &= \lim_{x \to \frac{\pi}{4}} \ \frac{1 - \frac{\sin x}{\cos x}}{\sin x - \cos x} \\[8pt] &= \lim_{x \to \frac{\pi}{4}} \ \frac{ \displaystyle \frac{\cos x - \sin x}{\cos x}}{-(\cos x-\sin x)} \\[8pt] &= \lim_{x \to \frac{\pi}{4}} \ \frac{\cos x-\sin x}{-\cos x (\cos x-\sin x)} \\[8pt] &= - \lim_{x \to \frac{\pi}{4}} \ \frac{1}{\cos x} = - \frac{1}{\cos \frac{\pi}{4}} \\[8pt] &= -\frac{1}{\frac{1}{2}\sqrt{2}} = -\sqrt{2} \end{aligned}
Contoh 15:
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{1-\sqrt{\cos x}}{x^2} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to 0} \ \frac{1-\sqrt{\cos x}}{x^2} &= \lim_{x \to 0} \ \frac{1-\sqrt{\cos x}}{x^2} \cdot \frac{1+\sqrt{\cos x}}{1+\sqrt{\cos x}} \\[8pt] &= \lim_{x \to 0} \ \frac{1 - \cos x}{x^2 (1+\sqrt{\cos x})} = \lim_{x \to 0} \ \frac{2 \sin^2 \frac{1}{2}x}{x^2 (1+\sqrt{\cos x})} \\[8pt] &= \lim_{x \to 0} \ \left( \frac{2}{1+\sqrt{\cos x}} \cdot \frac{\sin \frac{1}{2}x}{x} \cdot \frac{\sin \frac{1}{2}x}{x} \right) \\[8pt] &= \frac{2}{1+\sqrt{\cos 0}} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{2}{1+\sqrt{1}} \cdot \frac{1}{4} \\[8pt] &= \frac{1}{4} \end{aligned}
Contoh 16:
Nilai \( \displaystyle \lim_{x \to \frac{\pi}{8}} \ \frac{\sin^2 2x - \cos^2 2x}{\sin 2x - \cos 2x} = \cdots \)
- \( -\sqrt{2} \)
- \( -\frac{1}{2}\sqrt{2} \)
- \( 0 \)
- \( \frac{1}{2}\sqrt{2} \)
- \( \sqrt{2} \)
Pembahasan »
\begin{aligned} \lim_{x \to \frac{\pi}{8}} \ \frac{\sin^2 2x - \cos^2 2x}{\sin 2x - \cos 2x} &= \lim_{x \to \frac{\pi}{8}} \ \frac{(\sin 2x - \cos 2x)(\sin 2x + \cos 2x)}{\sin 2x - \cos 2x} \\[8pt] &= \lim_{x \to \frac{\pi}{8}} \ (\sin 2x + \cos 2x) \\[8pt] &= \sin \left(2 \cdot \frac{\pi}{8}\right) + \cos \left(2 \cdot \frac{\pi}{8}\right) \\[8pt] &= \sin \frac{\pi}{4} + \cos \frac{\pi}{4} \\[8pt] &= \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} = \sqrt{2} \end{aligned}
Jawaban E.
Contoh 17:
Nilai \( \displaystyle \lim_{\theta \to 0} \ \frac{1-\cos m\theta}{1-\cos n\theta} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{\theta \to 0} \ \frac{1-\cos m\theta}{1-\cos n\theta} &= \lim_{\theta \to 0} \ \frac{2 \sin^2 \frac{1}{2} m\theta}{2 \sin^2 \frac{1}{2} n\theta} \\[8pt] &= \lim_{\theta \to 0} \ \frac{ \displaystyle \frac{\sin^2 \frac{1}{2} m\theta}{\theta^2} }{ \displaystyle \frac{\sin^2 \frac{1}{2} n\theta}{\theta^2} } \\[8pt] &= \frac{\frac{1}{2}m \cdot \frac{1}{2}m}{ \frac{1}{2}n \cdot \frac{1}{2}n } \\[8pt] &= \frac{m^2}{n^2} \end{aligned}
Contoh 18:
Nilai \( \displaystyle \lim_{x \to a} \ \frac{\sin (x-a)}{x^2-a^2} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to a} \ \frac{\sin (x-a)}{x^2-a^2} &= \lim_{x \to a} \ \frac{\sin (x-a)}{(x-a)(x+a)} \\[8pt] &= \lim_{x \to a} \ \frac{\sin (x-a)}{(x-a)} \cdot \lim_{x \to a} \ \frac{1}{(x+a)} \\[8pt] &= 1 \cdot \frac{1}{a+a} \\[8pt] &= \frac{1}{2a} \end{aligned}
Contoh 19:
Nilai \( \displaystyle \lim_{x\to 1} \ \frac{\sin \left( 1 - \frac{1}{x} \right) \cos \left( 1 - \frac{1}{x} \right)}{x-1} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to 1} \ \frac{\sin \left( 1 - \frac{1}{x} \right) \cos \left( 1 - \frac{1}{x} \right)}{x-1} &= \lim_{x\to 1} \ \frac{\sin \left( \frac{x-1}{x} \right) \cos \left( \frac{x-1}{x} \right)}{x-1} \\[8pt] &= \lim_{x\to 1} \ \frac{\sin \frac{1}{x} (x-1) \cos\frac{1}{x} (x-1)}{x-1} \\[8pt] &= \lim_{x\to 1} \ \frac{\sin \frac{1}{x} (x-1)}{x-1} \cdot \lim_{x\to 1} \ \cos\frac{1}{x} (x-1) \\[8pt] &= \frac{1}{x} \cdot \cos 0 = \frac{1}{x} \cdot 1 \\[8pt] &= \frac{1}{x} \end{aligned}
Contoh 20:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\cos 3x - \cos x}{x^2} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{\cos 3x - \cos x}{x^2} &= \lim_{x\to 0} \ \frac{-2 \sin \frac{1}{2} (3x+x) \sin \frac{1}{2} (3x-x)}{x^2} \\[8pt] &= \lim_{x\to 0} \ \frac{-2 \sin 2x \sin x}{x^2} \\[8pt] &= -2 \ \cdot \ \lim_{x\to 0} \frac{\sin 2x}{x} \ \cdot \ \lim_{x\to 0} \frac{\sin x}{x} \\[8pt] &= -2 \ \cdot \ 2 \ \cdot \ 1 \\[8pt] &= -4 \end{aligned}
Contoh 21:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\sin 5x - \sin 3x}{\sin x} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{\sin 5x - \sin 3x}{\sin x} &= \lim_{x\to 0} \ \frac{2 \cos \frac{1}{2} (5x+3x) \sin \frac{1}{2} (5x-3x)}{\sin x} \\[8pt] &= \lim_{x\to 0} \ \frac{2 \cos 4x \sin x}{\sin x} \\[8pt] &= \lim_{x\to 0} \ 2 \cos 4x \\[8pt] &= 2 \ \cos 0 = 2 \cdot 1 \\[8pt] &= 2 \end{aligned}
Contoh 22:
Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\cos (x+a) - \cos (x-a)}{x} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{\cos (x+a) - \cos (x-a)}{x} &= \lim_{x\to 0} \ \frac{-2 \sin \frac{1}{2} ((x+a)+(x-a)) \sin \frac{1}{2} ((x+a)-(x-a))}{x} \\[8pt] &= \lim_{x\to 0} \ \frac{-2 \sin x \ \sin a}{x} \\[8pt] &= -2 \sin a \ \cdot \ \lim_{x\to 0} \ \frac{\sin x}{x} \\[8pt] &= -2 \sin a \ \cdot \ 1 \\[8pt] &= -2 \sin a \end{aligned}
Contoh 23:
Nilai \( \displaystyle \lim_{x\to b} \ \frac{\sin x - \sin b}{x - b} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to b} \ \frac{\sin x - \sin b}{x - b} &= \lim_{x\to b} \ \frac{2 \cos \frac{1}{2} (x+b) \sin \frac{1}{2} (x-b)}{x-b} \\[8pt] &= \lim_{x\to b} \ \frac{\cos \frac{1}{2} (x+b) \sin \frac{1}{2} (x-b)}{\frac{1}{2}(x-b)} \\[8pt] &= \lim_{x\to b} \ \cos \frac{1}{2} (x+b) \cdot \lim_{x\to b} \ \frac{\sin \frac{1}{2} (x-b)}{\frac{1}{2}(x-b)} \\[8pt] &= \cos \frac{1}{2} (b+b) \cdot 1 \\[8pt] &= \cos b \end{aligned}
Contoh 24:
Nilai \( \displaystyle \lim_{x \to \theta} \ \frac{x \sin \theta - \theta \sin x}{x-\theta} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to \theta} \ \frac{x \sin \theta - \theta \sin x}{x-\theta} &= \lim_{x \to \theta} \ \frac{x \sin \theta - \theta \sin \theta + \theta \sin \theta - \theta \sin x}{x-\theta} \\[8pt] &= \lim_{x \to \theta} \ \frac{(x-\theta)\sin \theta + \theta (\sin \theta - \sin x) }{x-\theta} \\[8pt] &= \lim_{x \to \theta} \ \frac{(x-\theta)\sin \theta}{x-\theta} + \lim_{x \to \theta} \ \frac{\theta (\sin \theta - \sin x) }{x-\theta} \\[8pt] &= \sin \theta + \theta \cdot \lim_{x \to \theta} \ \frac{\sin \theta - \sin x}{x-\theta} \\[8pt] &= \sin \theta + \theta \cdot \lim_{x \to \theta} \ \frac{2 \cos \frac{1}{2}(\theta + x) \sin \frac{1}{2} (\theta-x)}{-2 \cdot \frac{1}{2}(\theta-x)} \\[8pt] &= \sin \theta - \theta \cdot \lim_{x \to \theta} \ \cos \frac{1}{2}(\theta + x) \cdot \lim_{x \to \theta} \ \frac{\sin \frac{1}{2} (\theta-x)}{\frac{1}{2}(\theta-x)} \\[8pt] &= \sin \theta - \theta \cdot \cos \theta \cdot 1 \\[8pt] &= \sin \theta - \theta \cos \theta \end{aligned}
Contoh 25:
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{\sin (\pi x-\pi)}{(x-1) \cos (\pi x-\pi)} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \frac{\sin (\pi x-\pi)}{(x-1) \cos (\pi x-\pi)} &= \lim_{x\to 0} \ \frac{\sin \pi (x-1)}{(x-1) \cos \pi (x-1)} \\[8pt] &= \lim_{x\to 0} \ \frac{\sin \pi (x-1)}{(x-1) } \cdot \lim_{x\to 0} \ \frac{1}{\cos \pi (x-1)} \\[8pt] &= \pi \cdot \frac{1}{\cos 0} = \pi \cdot \frac{1}{1} \\[8pt] &= \pi \end{aligned}
Contoh 26:
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{\sin (x-1)}{x^2+x-2} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to 0} \ \frac{\sin (x-1)}{x^2+x-2} &= \lim_{x \to 0} \ \frac{\sin (x-1)}{(x+2)(x-1)} \\[8pt] &= \lim_{x \to 0} \ \frac{1}{(x+2)} \cdot \lim_{x \to 0} \ \frac{\sin (x-1)}{(x-1)} \\[8pt] &= \frac{1}{0+2} \cdot 1 \\[8pt] &= \frac{1}{2} \end{aligned}
Contoh 27:
Nilai \( \displaystyle \lim_{x \to \frac{\pi}{4}} \ \frac{\cos 2x}{\sin x - \cos x} = \cdots \)
- \( -\sqrt{2} \)
- \( -\frac{1}{2}\sqrt{2} \)
- \( 0 \)
- \( \frac{1}{2}\sqrt{2} \)
- \( \sqrt{2} \)
Pembahasan »
\begin{aligned} \lim_{x \to \frac{\pi}{4}} \ \frac{\cos 2x}{\sin x - \cos x} &= \lim_{x \to \frac{\pi}{4}} \ \frac{\cos^2 x - \sin^2 x}{\sin x - \cos x} \\[8pt] &= \lim_{x \to \frac{\pi}{4}} \ \frac{(\cos x - \sin x)(\cos x + \sin x)}{-(\cos x - \sin x)} \\[8pt] &= \lim_{x \to \frac{\pi}{4}} \ \frac{(\cos x + \sin x)}{-1} = \lim_{x \to \frac{\pi}{4}} \ (-\cos x - \sin x) \\[8pt] &= -\cos \frac{\pi}{4} - \sin\frac{\pi}{4} \\[8pt] &= -\frac{1}{2} \sqrt{2} -\frac{1}{2} \sqrt{2} = -\sqrt{2} \end{aligned}
Jawaban A.
Contoh 28:
Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x^2-1)\tan (2x-2)}{\sin^2 (x-1)} = \cdots \)
- 1
- 2
- 4
- 6
- 8
Pembahasan »
\begin{aligned} \lim_{x \to 1} \ \frac{(x^2-1)\tan (2x-2)}{\sin^2 (x-1)} &= \lim_{x \to 1} \ \frac{(x-1)(x+1) \tan 2(x-1)}{\sin^2 (x-1)} \\[8pt] &= \lim_{x \to 1} \ (x+1) \cdot \lim_{x \to 1} \ \frac{(x-1)}{\sin (x-1)} \cdot \lim_{x \to 1} \ \frac{\tan 2(x-1)}{\sin (x-1)} \\[8pt] &= (1+1) \cdot 1 \cdot 2 \\[8pt] &= 4 \end{aligned}
Jawaban C.
Contoh 29:
Nilai \( \displaystyle \lim_{x\to 0} \ \left( \frac{\sin 4x}{x^2 \tan 2x} - \frac{2}{x^2} \right) = \cdots \)
- -8
- -4
- -2
- 2
- 4
Pembahasan »
\begin{aligned} \lim_{x\to 0} \ \left( \frac{\sin 4x}{x^2 \tan 2x} - \frac{2}{x^2} \right) &= \lim_{x\to 0} \ \left( \frac{\sin 4x}{x^2 \tan 2x} - \frac{2 \tan 2x}{x^2 \tan 2x} \right) = \lim_{x\to 0} \ \frac{\sin 4x - 2\tan 2x}{x^2 \tan 2x} \\[8pt] &= \lim_{x\to 0} \ \frac{\sin 4x - 2 \cdot \frac{\sin 2x}{\cos 2x}}{x^2 \tan 2x} = \lim_{x\to 0} \ \frac{\sin (2 \cdot 2x) \ \cos 2x - 2\sin 2x}{x^2 \tan 2x \ \cos 2x} \\[8pt] &= \lim_{x\to 0} \ \frac{(2 \sin 2x \cos 2x) \cos 2x - 2\sin 2x}{x^2 \ \frac{\sin 2x}{\cos 2x} \cdot \cos 2x} = \lim_{x\to 0} \ \frac{2 \sin 2x (\cos^2 2x - 1)}{x^2 \sin 2x} \\[8pt] &= \lim_{x\to 0} \ \frac{2 \sin 2x \ (-\sin^2 2x)}{x^2 \sin 2x} = \lim_{x\to 0} \ \frac{-2 \sin^2 2x }{x^2} \\[8pt] &= -2 \cdot \lim_{x\to 0} \ \frac{\sin 2x }{x} \cdot \lim_{x\to 0} \ \frac{\sin 2x }{x} \\[8pt] &= -2 \cdot 2 \cdot 2 \\[8pt] &= -8 \end{aligned}
Jawaban A.
Contoh 30:
Nilai \( \displaystyle \lim_{x\to 2} \ \frac{(x-2) \cos (\pi x- 2 \pi)}{\tan (2\pi x - 4 \pi)} = \cdots \)
- \( -\frac{1}{2\pi} \)
- \( -\frac{1}{\pi} \)
- \( 0 \)
- \( \frac{1}{\pi} \)
- \( \frac{1}{2\pi} \)
Pembahasan »
\begin{aligned} \lim_{x\to 2} \ \frac{(x-2) \cos (\pi x- 2 \pi)}{\tan (2\pi x - 4 \pi)} &= \lim_{x\to 2} \ \frac{(x-2) \ \cos \pi (x- 2)}{\tan 2\pi (x - 2)} \\[8pt] &= \lim_{x\to 2} \ \cos \pi (x- 2) \cdot \lim_{x\to 2} \ \frac{(x-2)}{\tan 2\pi (x - 2)} \\[8pt] &= \cos \pi(0) \cdot \frac{1}{2\pi} = \cos 0 \cdot \frac{1}{2\pi} \\[8pt] &= 1 \cdot \frac{1}{2\pi} = \frac{1}{2\pi} \end{aligned}
Jawaban E.
Cukup sekian untuk artikel ini. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan jika ada yang kurang jelas dari artikel ini silahkan tanyakan di kolom komentar. Terima kasih.
Penulis: Tju Ji Long · Statistisi