www.jagostat.com

www.jagostat.com

Website Tentang Matematika & Statistika

Website Tentang Matematika & Statistika

Bahas Soal Matematika   »   Integral   ›  Contoh Soal dan Pembahasan Integral Kelas 12
Joki Tugas Matematika Murah, Hanya Rp10-50 Ribu. Hub. WA: 0812-5632-4552

Contoh Soal dan Pembahasan Integral Kelas 12


Flag Counter
Flag Counter
Contoh 1:

Tentukan \( \int (x^{20} + 20x)^{423} \ (5x^{19}+5) \ dx \).

Pembahasan:

Kita bisa selesaikan integral ini menggunakan metode atau teknik integral substitusi. Misalkan \( u = x^{20} + 20x \), sehingga:

\begin{aligned} u = x^{20} + 20x \Leftrightarrow \frac{du}{dx} = 20x^{19} + 20 \\[8pt] \Leftrightarrow \frac{du}{dx} = 4\left(5x^{19} + 5\right) \\[8pt] \Leftrightarrow dx = \frac{du}{4 \left(5x^{19} + 5\right)} \end{aligned}

Dengan substitusi hasil yang kita peroleh di atas ke soal integral, kita dapatkan hasil berikut:

\begin{aligned} \int (x^{20} + 20x)^{423} \ (5x^{19}+5) \ dx &= \int u^{423} \ (5x^{19}+5) \cdot \frac{du}{4 \left(5x^{19} + 5\right)} \\[8pt] &= \int u^{423} \cdot \frac{1}{4} \ du = \frac{1}{4} \int u^{423} \ du \\[8pt] &= \frac{1}{4} \cdot \frac{1}{423+1}u^{423+1} + C \\[8pt] &= \frac{1}{4} \cdot \frac{1}{424} (x^{20} + 20x)^{424} + C \\[8pt] &= \frac{1}{1.696} (x^{20} + 20x)^{424} + C \end{aligned}
Contoh 2: UTBK 2019

Misalkan fungsi \(f\) memenuhi \(f(x+5)=f(x)\) untuk setiap \(x\in R\). Jika \( \int_1^5 f(x) \ dx = 3 \) dan \( \int_{-5}^{-4} f(x) \ dx = -2 \) maka nilai \( \int_5^{15} f(x) \ dx = \cdots \)

Pembahasan:

Ingat bahwa jika \( f(x) = f(x+c) \) maka \(f(x)\) adalah fungsi periodik dengan periode \(c\), sehingga berlaku:

\begin{aligned} \int_a^b f(x) \ dx &= \int_{a+c}^{b+c} f(x) \ dx \\[8pt] &= \int_{a+2c}^{b+2c} f(x) \ dx \\[8pt] &= \text{dan seterusnya} \cdots \end{aligned}

Karena \( f(x) = f(x+5) \), berarti \(f(x)\) adalah fungsi periodik dengan periode 5 sehingga:

\begin{aligned} \int_1^5 f(x) \ dx &= \int_6^{10} f(x) \ dx \\[8pt] &= \int_{11}^{15} f(x) \ dx = 3 \\[8pt] \int_{-5}^{-4} f(x) \ dx &= \int_0^1 f(x) \ dx = \int_5^6 f(x) \ dx \\[8pt] &= \int_{10}^{11} f(x) \ dx = -2 \end{aligned}

Dengan demikian, berdasarkan hasil di atas, kita peroleh berikut:

\begin{aligned} \int_5^{15} f(x) \ dx &= \int_5^6 f(x) \ dx + \int_6^{10} f(x) \ dx \\[8pt] & \quad + \int_{10}^{11} f(x) \ dx + \int_{11}^{15} f(x) \ dx \\[8pt] &= -2 + 3 + (-2) + 3 \\[8pt] &= 2 \end{aligned}

Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.

Inside of every problem lies an opportunity.