JAGOSTAT.COM

JAGOSTAT.COM

Website Belajar Statistika: Konsep, Teori, dan Penerapan

Website Belajar Statistika: Konsep, Teori, dan Penerapan

Kalkulus I » Limit dan Kekontinuan › Limit Tak Terhingga
Limit

Limit Tak Terhingga

Apa yang terjadi pada suatu fungsi g(x) bila x menjadi semakin lama semakin besar? Kita memakai notasi x → ∞ sebagai cara singkat untuk mengatakan bahwa x menjadi semakin besar tanpa batas.


Oleh Tju Ji Long · Statistisi

Perhatikan fungsi \(g(x)=\frac{x}{(1+x^2)}\) yang mana grafiknya diperlihatkan dalam Gambar 1. Kita menanyakan pertanyaan ini: Apa yang terjadi pada \(g(x)\) bila \(x\) menjadi semakin lama semakin besar? Dalam lambang, kita menanyakan nilai dari \( \displaystyle{\lim_{x\to ∞}} g(x) \).

Gambar

Gambar 1

Kita memakai \(x→∞\) sebagai cara singkat untuk mengatakan bahwa \(x\) menjadi semakin besar tanpa batas. Dalam tabel pada Gambar 2, kita telah mendaftarkan nilai-nilai \(g(x)=x/(1+x^2)\) untuk beberapa \(x\). Kelihatan bahwa \(g(x)\) menjadi semakin kecil bilamana \(x\) menjadi semakin besar. Kita tuliskan

Gambar Gambar

Gambar 2.

Untuk \(x→-∞\), kita dapat menuliskan

Gambar

Dalam mencari nilai limit tak terhingga kita tidak selalu membuat daftar nilai fungsi untuk x menuju tak terhingga seperti diperlihatkan dalam Tabel 2. Melainkan kita dapat gunakan toerema-teorema yang telah kita pelajari terkait limit.

Contoh 1:

Buktikan bahwa

Gambar

Penyelesaian:

Perhatikan bahwa kita dapat membuktikan limit tersebut dengan membagi pembilang dan penyebut dengan pangkat \(x\) tertinggi yang muncul di penyebut, yakni \(x^2\).

Gambar

Contoh 2:

Gambar

Penyelesaian:

Grafik \(f(x)=\frac{2x^3}{(1+x^3)}\) ditunjukkan pada Gambar 3. Untuk mencari limit ini, bagi pembilang dan penyebut dengan \(x^3\).

Gambar Gambar

Gambar 3

Selanjutnya, pandang grafik \(f(x)=\frac{1}{(x-2)}\), yang diperlihatkan dalam Gambar 4. Ketika x mendekati 2 dari sebelah kiri, fungsi tampak menurun tanpa batas. Begitu pula, ketika \(x\) mendekati 2 dari kanan, fungsi tampak meningkat tanpa batas.

Oleh karena itu, adalah tidak masuk akal untuk menanyakan \( \displaystyle{\lim_{x\to2} \frac{1}{(x-1)} } \) tetapi kita masih dapat menuliskan berikut ini.

Gambar

Pada limit yang pertama di atas, \(f(x)\) dapat dibuat sebesar yang kita inginkan dengan mengambil \(x\) yang cukup dekat ke 2 dari sebelah kiri. Untuk limit yang kedua, \(f(x)\) dapat dibuat sebesar yang kita inginkan dengan mengambil \(x\) yang cukup dekat ke 2 dari sebelah kanan.

Contoh 3

Gambar

Penyelesaian:

Grafik \(f(x)=\frac{1}{(x-1)^2}\) diperlihatkan dalam Gambar 4. Ketika \(x→1^+\), penyebut tetap positif tetapi menuju nol, sedangkan pembilang adalah 1 untuk semua \(x\). Jadi, rasio \(1/(x-1)^2\) bisa dibuat besar secara sembarang dengan membatasi \(x\) menjadi dekat 1 di sebelah kanan.

Begitu pula, ketika \(x→1^-\), penyebut adalah positif dan bisa dibuat dekat ke 0 secara sembarang. Karena itu, \(1/(x-1)^2\) bisa dibuat besar secara sembarang dengan membatasi \(x\) dekat ke 1 dari sebelah kiri. Oleh karena itu kita simpulkan bahwa

Gambar

Karena kedua limit adalah \(∞\), kita dapat juga menuliskan

Gambar Gambar

Gambar 4

Contoh 4

Gambar

Penyelesaian:

Perhatikan bahwa

Gambar

Sehingga untuk \(x→2^+\), maka \(x+1→3, \ x-3→-1\), dan \(x-2→0^+\); jadi, pembilang mendekati 3, tetapi penyebut adalah negatif dan mendekati 0. Kita simpulkan

Gambar

Cukup sekian penjelasan mengenai limit tak terhingga beserta contoh soal dan pembahasannya dalam artikel ini. Semoga bermanfaat.

Sumber:

Purcell, Edwin J., dan Dale Verberg. (1987). Calculus with Analytic Geometry, ed 5. Terjemahan Susila, I Nyoman, dkk. Kalkulus dan Geometri Analitis. Indonesia: Penerbit Erlangga.

Purcell, Edwin J., Dale Verberg., dan Steve Rigdon. (2007). Calculus, ed 9. Penerbit Pearson.

Artikel Terkait

Seseorang yang pernah melakukan kesalahan dan tidak pernah memperbaikinya berarti Ia telah melakukan satu kesalahan lagi.

A PHP Error was encountered

Severity: Core Warning

Message: PHP Startup: Unable to load dynamic library 'imagick.so' (tried: /opt/alt/php72/usr/lib64/php/modules/imagick.so (libMagickWand-7.Q16HDRI.so.7: cannot open shared object file: No such file or directory), /opt/alt/php72/usr/lib64/php/modules/imagick.so.so (/opt/alt/php72/usr/lib64/php/modules/imagick.so.so: cannot open shared object file: No such file or directory))

Filename: Unknown

Line Number: 0

Backtrace: