Contoh Soal Limit Trigonometri dengan Pemfaktoran
Supaya makin paham dengan pembahasan mengenai limit fungsi trigonometri, Anda perlu sering latihan mengerjakan soal. Dalam artikel ini kita akan membahas 20 contoh soal limit trigonometri yang penyelesaiannya perlu menggunakan pemfaktoran.
Sebelum kita masuk ke pembahasan dari masing-masing soal tersebut, ada baiknya Anda pahami beberapa teorema penting terkait limit trigonometri berikut ini. Kita akan sering menggunakan teorema ini untuk menyelesaikan limit fungsi trigonometri.
Contoh 1: SPMB 2005
Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x^2+x-2) \sin (x-1)}{x^2 - 2x + 1} = \cdots \)
- 4
- 3
- 0
- \( -\frac{1}{4} \)
- \( -\frac{1}{2} \)
Pembahasan »
\begin{aligned} \lim_{x \to 1} \ \frac{(x^2+x-2) \sin (x-1)}{x^2 - 2x + 1} &= \lim_{x \to 1} \ \frac{(x+2)(x-1) \sin(x-1)}{(x-1)(x-1)} \\[8pt] &= \lim_{x \to 1} \ \frac{(x+2)\sin(x-1)}{(x-1)} \\[8pt] &= \lim_{x \to 1} \ (x+2) \cdot \lim_{x \to 1} \ \frac{\sin(x-1)}{(x-1)} \\[8pt] &= (1+2) \cdot 1 \\[8pt] &= 3 \end{aligned}
Jawaban B.
Contoh 2: EBTANAS SMA IPA 1998
Nilai \( \displaystyle \lim_{x \to 5} \ \frac{(4x-10) \sin (x-5)}{x^2-25} = \cdots \)
- -3
- -1
- 1
- 2
- 4
Pembahasan »
\begin{aligned} \lim_{x \to 5} \ \frac{(4x-10) \sin (x-5)}{x^2-25} &= \lim_{x \to 5} \ \frac{(4x-10) \sin (x-5)}{(x-5)(x+5)} \\[8pt] &= \lim_{x \to 5} \ \frac{(4x-10)}{(x+5)} \cdot \lim_{x \to 5} \ \frac{\sin (x-5)}{(x-5)} \\[8pt] &= \frac{4(5)-10}{5+5} \cdot 1 = \frac{20-10}{10} = \frac{10}{10} \\[8pt] &= 1 \end{aligned}
Jawaban C.
Contoh 3: UM UGM 2004
Nilai \( \displaystyle \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{x^2-2x+1} = \cdots \)
- -1
- \( -\frac{1}{3} \)
- 0
- \( -\frac{1}{2} \)
- 1
Pembahasan »
\begin{aligned} \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{x^2-2x+1} &= \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{-(x-1)(1-x)} \\[8pt] &= \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{-(x-1)(1+\sqrt{x})(1-\sqrt{x})} \\[8pt] &= \lim_{x \to 1} \ \frac{1}{-(1+\sqrt{x})} \cdot \lim_{x \to 1} \ \frac{\tan(x-1)}{(x-1)} \cdot \lim_{x \to 1} \ \frac{\sin(1-\sqrt{x})}{(1-\sqrt{x})} \\[8pt] &= \frac{1}{-(1+\sqrt{1})} \cdot 1 \cdot 1 = -\frac{1}{2} \end{aligned}
Jawaban D.
Contoh 4: SPMB 2005
Nilai \( \displaystyle \lim_{x \to 2} \ \frac{\tan (2-\sqrt{2x})}{x^2 - 2x} = \cdots \)
- \( \frac{1}{4} \)
- \( \frac{1}{8} \)
- \( 0 \)
- \( -\frac{1}{6} \)
- \( -\frac{1}{4} \)
Pembahasan »
\begin{aligned} \lim_{x \to 2} \ \frac{\tan (2-\sqrt{2x})}{x^2 - 2x} &= \lim_{x \to 2} \ \frac{\tan (-\sqrt{2} \ (\sqrt{x}-\sqrt{2}))}{ x \ (\sqrt{x}+\sqrt{2})(\sqrt{x}-\sqrt{2}) } \\[8pt] &= \lim_{x \to 2} \ \frac{\tan (-\sqrt{2} \ (\sqrt{x}-\sqrt{2}))}{(\sqrt{x}-\sqrt{2}) } \cdot \lim_{x \to 2} \ \frac{1}{ x \ (\sqrt{x}+\sqrt{2})} \\[8pt] &= -\sqrt{2} \cdot \frac{1}{2(\sqrt{2} + \sqrt{2})} = -\sqrt{2} \cdot \frac{1}{4\sqrt{2}} \\[8pt] &= - \frac{1}{4} \end{aligned}
Jawaban E.
Contoh 5:
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{\sin (x-1)}{x^2+x-2} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to 0} \ \frac{\sin (x-1)}{x^2+x-2} &= \lim_{x \to 0} \ \frac{\sin (x-1)}{(x+2)(x-1)} \\[8pt] &= \lim_{x \to 0} \ \frac{1}{(x+2)} \cdot \lim_{x \to 0} \ \frac{\sin (x-1)}{(x-1)} \\[8pt] &= \frac{1}{0+2} \cdot 1 \\[8pt] &= \frac{1}{2} \end{aligned}
Contoh 6:
Nilai \( \displaystyle \lim_{x \to a} \ \frac{\sin (x-a)}{x^2-a^2} = \cdots \)
Pembahasan »
\begin{aligned} \lim_{x \to a} \ \frac{\sin (x-a)}{x^2-a^2} &= \lim_{x \to a} \ \frac{\sin (x-a)}{(x-a)(x+a)} \\[8pt] &= \lim_{x \to a} \ \frac{\sin (x-a)}{(x-a)} \cdot \lim_{x \to a} \ \frac{1}{(x+a)} \\[8pt] &= 1 \cdot \frac{1}{a+a} \\[8pt] &= \frac{1}{2a} \end{aligned}
Contoh 7:
Nilai \( \displaystyle \lim_{x\to 1} \ \frac{\tan(1-x)}{x^3-1} = \cdots \)
- \( \frac{1}{3} \)
- \( -\frac{1}{3} \)
- \( 1 \)
- \( -1 \)
- \( \frac{1}{2} \)
Pembahasan »
\begin{aligned} \lim_{x\to 1} \ \frac{\tan(1-x)}{x^3-1} &= \lim_{x\to 1} \ \frac{\tan(1-x)}{(x-1)(x^2+x+1)} \\[8pt] &= \lim_{x\to 1} \ \frac{\tan(1-x)}{-(1-x)(x^2+x+1)} \\[8pt] &= \lim_{x\to 1} \ \frac{\tan(1-x)}{(1-x)} \cdot \lim_{x\to 1} \ \frac{1}{-(x^2+x+1)} \\[8pt] &= 1 \cdot \frac{1}{-(1^2 + 1 + 1)} = - \frac{1}{3} \end{aligned}
Jawaban B.
Contoh 8: UM UNDIP 2010
Nilai \( \displaystyle \lim_{x \to -1} \frac{\sin (1-x^2) \cos (1-x^2)}{x^2-1} = \cdots \)
- 1
- -1
- 2
- -2
- 0
Pembahasan »
\begin{aligned} \lim_{x \to -1} \frac{\sin (1-x^2) \cos (1-x^2)}{x^2-1} &= \lim_{x \to -1} \frac{\sin (1-x^2) \cos (1-x^2)}{-(1-x^2)} \\[8pt] &= \lim_{x \to -1} \frac{\sin (1-x^2)}{-(1-x^2)} \cdot \lim_{x \to -1} \cos (1-x^2) \\[8pt] &= \frac{1}{-1} \cdot \cos 0 = -1 \end{aligned}
Jawaban B.
Contoh 9: SIMAK UI 2012
Nilai \( \displaystyle \lim_{x \to 1} \frac{\sin 2(x-1)}{(x^2-2x+1) \cot \frac{1}{2}(x-1)} = \cdots \)
- 1/4
- 1/2
- 1
- 2
- 4
Pembahasan »
\begin{aligned} \lim_{x \to 1} \ \frac{\sin 2(x-1)}{(x^2-2x+1) \cot \frac{1}{2}(x-1)} &= \lim_{x \to 1} \ \frac{\sin 2(x-1)}{(x-1)(x-1) \ \frac{\cos \frac{1}{2}(x-1) }{\sin \frac{1}{2}(x-1)} } \\[8pt] &= \lim_{x \to 1} \ \frac{\sin 2(x-1) \sin \frac{1}{2}(x-1)}{(x-1)(x-1) \ \cos \frac{1}{2}(x-1) } \\[8pt] &= \lim_{x \to 1} \ \frac{\sin 2(x-1)}{(x-1)} \cdot \lim_{x \to 1} \ \frac{\sin \frac{1}{2}(x-1)}{(x-1)} \cdot \lim_{x \to 1} \ \frac{1}{\cos \frac{1}{2}(x-1) } \\[8pt] &= 2 \cdot \frac{1}{2} \cdot \frac{1}{\cos 0} = 2 \cdot \frac{1}{2} \cdot \frac{1}{1} = 1 \end{aligned}
Jawaban C.
Contoh 10: SPMB 2006
Nilai \( \displaystyle \lim_{x \to 5} \ \frac{2x^3 - 20x^2 + 50x}{\sin^2 (x-5) \cos (2x-10)} = \cdots \)
- 0
- 1
- 5
- 10
- ∞
Pembahasan »
\begin{aligned} \lim_{x \to 5} \ \frac{2x^3 - 20x^2 + 50x}{\sin^2 (x-5) \cos (2x-10)} &= \lim_{x \to 5} \ \frac{2x \ (x^2 - 10x + 25)}{\sin^2 (x-5) \cos (2x-10)} \\[8pt] &= \lim_{x \to 5} \ \frac{2x \ (x-5)(x-5)}{\sin^2 (x-5) \cos (2x-10)} \\[8pt] &= \lim_{x \to 5} \ \frac{(x-5)(x-5)}{\sin^2 (x-5) } \cdot \lim_{x \to 5} \ \frac{2x}{\cos (2x-10)} \\[8pt] &= (1)^2 \cdot \frac{2(5)}{\cos 0} = 1 \cdot \frac{10}{1} = 10 \end{aligned}
Jawaban D.
Contoh 11: UM UGM 2016
Nilai \( \displaystyle \lim_{x \to 3} \ \frac{(x+6) \tan(2x-6)}{(x^2-x-6)} = \cdots \)
- \( -\frac{18}{5} \)
- \( -\frac{9}{5} \)
- \( \frac{9}{5} \)
- \( \frac{18}{5} \)
- \( \frac{27}{5} \)
Pembahasan »
\begin{aligned} \lim_{x \to 3} \ \frac{(x+6) \tan(2x-6)}{(x^2-x-6)} &= \lim_{x \to 3} \ \frac{(x+6) \tan 2(x-3)}{(x+2)(x-3)} \\[8pt] &= \lim_{x \to 3} \ \frac{(x+6)}{(x+2)} \cdot \lim_{x \to 3} \ \frac{\tan 2(x-3)}{(x-3)} \\[8pt] &= \frac{(3+6)}{(3+2)} \cdot 2 = \frac{9}{5} \cdot 2 = \frac{18}{5} \end{aligned}
Jawaban D.
Contoh 12: UM STIS 2017
Nilai \( \displaystyle \lim_{x \to 2} \frac{(x^2-5x-6) \sin 2(x-2)}{(x^2-x-2)} = \cdots \)
- -8
- -5
- -2
- 3/4
- 5
Pembahasan »
\begin{aligned} \lim_{x \to 2} \frac{(x^2-5x-6) \sin 2(x-2)}{(x^2-x-2)} &= \lim_{x \to 2} \frac{(x+1)(x-6) \sin 2(x-2)}{(x+1)(x-2)} \\[8pt] &= \lim_{x \to 2} \frac{(x-6) \sin 2(x-2)}{(x-2)} \\[8pt] &= \lim_{x \to 2} (x-6) \cdot \lim_{x \to 2} \frac{\sin 2(x-2)}{(x-2)} \\[8pt] &= (2-6) \cdot 2 = -8 \end{aligned}
Jawaban A.
Contoh 13: UM UGM 2017
Nilai \( \displaystyle \lim_{x \to -4} \ \frac{1-\cos(x+4)}{x^2+8x+16} = \cdots \)
- \( -2 \)
- \( -\frac{1}{2} \)
- \( \frac{1}{3} \)
- \( \frac{1}{2} \)
- \( 2 \)
Pembahasan »
\begin{aligned} \lim_{x \to -4} \ \frac{1-\cos(x+4)}{x^2+8x+16} &= \lim_{x \to -4} \ \frac{2\sin^2 \frac{1}{2}(x+4)}{(x+4)(x+4)} \\[8pt] &= 2 \cdot \lim_{x \to -4} \ \frac{\sin \frac{1}{2}(x+4)}{(x+4)} \cdot \lim_{x \to -4} \ \frac{\sin \frac{1}{2}(x+4)}{(x+4)} \\[8pt] &= 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \end{aligned}
Jawaban D.
Contoh 14: UM UNDIP 2011
Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x^2+x-2) \sin(x^2-1)}{x^2-2x+1} = \cdots \)
- \( -4 \)
- \( -\frac{3}{4} \)
- \( \frac{1}{2} \)
- 3
- 6
Pembahasan »
\begin{aligned} \lim_{x \to 1} \ \frac{(x^2+x-2) \sin(x^2-1)}{x^2-2x+1} &= \lim_{x \to 1} \ \frac{(x+2)(x-1) \sin(x+1)(x-1)}{(x-1)(x-1)} \\[8pt] &= \lim_{x \to 1} \ \frac{(x+2)\sin(x+1)(x-1)}{(x-1)} \\[8pt] &= \lim_{x \to 1} \ (x+2) \cdot \lim_{x \to 1} \ \frac{\sin((x+1)(x-1))}{(x-1)} \\[8pt] &= \lim_{x \to 1} (x+2) \cdot (x+1) \\[8pt] &= (1+2)(1+1) = 3 \cdot 2 = 6 \end{aligned}
Jawaban E.
Contoh 15: UMPTN 1995
Nilai \( \displaystyle \lim_{x \to 0} \ \frac{(x^2-1) \sin 6x}{x^3+3x^2+2x} = \cdots \)
- -3
- -2
- 2
- 3
- 5
Pembahasan »
\begin{aligned} \lim_{x \to 0} \ \frac{(x^2-1) \sin 6x}{x^3+3x^2+2x} &= \lim_{x \to 0} \ \frac{(x+1)(x-1) \sin 6x}{x(x+1)(x+2)} \\[8pt] &= \lim_{x \to 0} \ \frac{(x-1) \sin 6x}{x(x+2)} \\[8pt] &= \lim_{x \to 0} \ \frac{(x-1)}{(x+2)} \cdot \lim_{x \to 0} \ \frac{\sin 6x}{x} \\[8pt] &= \frac{(0-1)}{(0+2)} \cdot 6 = \frac{-1}{2} \cdot 6 \\[8pt] &= -3 \end{aligned}
Jawaban A.
Contoh 16: UMPTN 1995
Nilai \( \displaystyle \lim_{x \to -2} \ \frac{1-\cos(x+2)}{x^2+4x+4} = \cdots \)
- 0
- 1/4
- 1/2
- 2
- 4
Pembahasan »
\begin{aligned} \lim_{x \to -2} \ \frac{1-\cos(x+2)}{x^2+4x+4} &= \lim_{x \to -2} \ \frac{2\sin^2 \frac{1}{2}(x+2)}{(x+2)^2} \\[8pt] &= 2 \cdot \left(\frac{1}{2} \right)^2 = 2 \cdot \frac{1}{4} \\[8pt] &= \frac{1}{2} \end{aligned}
Jawaban C.
Contoh 17:
Nilai \( \displaystyle \lim_{x\to -2} \ \frac{(x^2-4) \tan(x+2)}{\sin^2 (x+2)} = \cdots \)
- -4
- -3
- 0
- 4
- ∞
Pembahasan »
\begin{aligned} \lim_{x\to -2} \ \frac{(x^2-4) \tan(x+2)}{\sin^2 (x+2)} &= \lim_{x\to -2} \ \frac{(x-2)(x+2) \tan(x+2)}{\sin^2 (x+2)} \\[8pt] &= \lim_{x\to -2} \ (x-2) \cdot \lim_{x\to -2} \ \frac{(x+2)}{\sin (x+2)} \cdot \lim_{x\to -2} \ \frac{\tan(x+2)}{\sin(x+2)} \\[8pt] &= (-2-2) \cdot 1 \cdot 1 \\[8pt] &= -4 \end{aligned}
Jawaban A.
Contoh 18:
Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x^2-1)\tan (2x-2)}{\sin^2 (x-1)} = \cdots \)
- 1
- 2
- 4
- 6
- 8
Pembahasan »
\begin{aligned} \lim_{x \to 1} \ \frac{(x^2-1)\tan (2x-2)}{\sin^2 (x-1)} &= \lim_{x \to 1} \ \frac{(x-1)(x+1) \tan 2(x-1)}{\sin^2 (x-1)} \\[8pt] &= \lim_{x \to 1} \ (x+1) \cdot \lim_{x \to 1} \ \frac{(x-1)}{\sin (x-1)} \cdot \lim_{x \to 1} \ \frac{\tan 2(x-1)}{\sin (x-1)} \\[8pt] &= (1+1) \cdot 1 \cdot 2 \\[8pt] &= 4 \end{aligned}
Jawaban C.
Contoh 19:
Nilai \( \displaystyle \lim_{x \to \frac{\pi}{8}} \ \frac{\sin^2 2x - \cos^2 2x}{\sin 2x - \cos 2x} = \cdots \)
- \( -\sqrt{2} \)
- \( -\frac{1}{2} \sqrt{2} \)
- \( 0 \)
- \( \frac{1}{2} \sqrt{2} \)
- \( \sqrt{2} \)
Pembahasan »
\begin{aligned} \lim_{x \to \frac{\pi}{8}} \ \frac{\sin^2 2x - \cos^2 2x}{\sin 2x - \cos 2x} &= \lim_{x \to \frac{\pi}{8}} \ \frac{(\sin 2x - \cos 2x)(\sin 2x + \cos 2x)}{\sin 2x - \cos 2x} \\[8pt] &= \lim_{x \to \frac{\pi}{8}} \ (\sin 2x + \cos 2x) \\[8pt] &= \sin \left(2 \cdot \frac{\pi}{8}\right) + \cos \left(2 \cdot \frac{\pi}{8}\right) \\[8pt] &= \sin \frac{\pi}{4} + \cos \frac{\pi}{4} \\[8pt] &= \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} = \sqrt{2} \end{aligned}
Jawaban E.
Contoh 20:
Nilai \( \displaystyle \lim_{x\to \frac{\pi}{2}} \ \frac{1-\sin^2 x}{(\sin^2 \frac{1}{2} x - \cos^2 \frac{1}{2} x)} = \cdots \)
- -2
- -1
- 0
- 1
- 2
Pembahasan »
\begin{aligned} \lim_{x\to \frac{\pi}{2}} \ \frac{1-\sin^2 x}{(\sin \frac{1}{2} x - \cos \frac{1}{2} x)^2} &= \lim_{x\to \frac{\pi}{2}} \ \frac{(1-\sin x)(1+\sin x)}{\sin^2 \frac{1}{2} x + \cos^2 \frac{1}{2} x - 2 \sin \frac{1}{2} x \cos \frac{1}{2} x} \\[8pt] &= \lim_{x\to \frac{\pi}{2}} \ \frac{(1-\sin x)(1+\sin x)}{1 - \sin x} \\[8pt] &= \lim_{x\to \frac{\pi}{2}} \ (1+\sin x) \\[8pt] &= 1 + \sin \frac{\pi}{2} \\[8pt] &= 1 + 1 = 2 \end{aligned}
Jawaban E.
Cukup sekian untuk artikel ini. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan jika ada yang kurang jelas dari artikel ini silahkan tanyakan di kolom komentar. Terima kasih.
Penulis: Tju Ji Long · Statistisi